Application of Parallel Computing Techniques to a Large-scale Reservoir Simulation

نویسندگان

  • Keni Zhang
  • Yu-Shu Wu
  • Chris Ding
  • Karsten Pruess
چکیده

Even with the continual advances made in both computational algorithms and computer hardware used in reservoir modeling studies, large-scale simulation of fluid and heat flow in heterogeneous reservoirs remains a challenge. The problem commonly arises from intensive computational requirement for detailed modeling investigations of real-world reservoirs. This paper presents the application of a massive parallel-computing version of the TOUGH2 code developed for performing large-scale field simulations. As an application example, the parallelized TOUGH2 code is applied to develop a three-dimensional unsaturated-zone numerical model simulating flow of moisture, gas, and heat in the unsaturated zone of Yucca Mountain, Nevada, a potential repository for high-level radioactive waste. The modeling approach employs refined spatial discretization to represent the heterogeneous fractured tuffs of the system, using more than a million 3-D gridblocks. The problem of two-phase flow and heat transfer within the model domain leads to a total of 3,226,566 linear equations to be solved per Newton iteration. The simulation is conducted on a Cray T3E-900, a distributed-memory massively parallel computer. Simulation results indicate that the parallel computing technique, as implemented in the TOUGH2 code, is very efficient. The reliability and accuracy of the model results have been demonstrated by comparing them to those of small-scale (coarse-grid) models. These comparisons show that simulation results obtained with the refined grid provide more detailed predictions of the future flow conditions at the site, aiding in the assessment of proposed repository performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Parallel Strategy of a Large Scale Simulation about Ten Millions Nodes to Reservoir with Multiple Layers

Aim at large scale fine reservoir numerical simulation application research on Shenwei computer, the multilayer two dimension two phase parallel software transplanted successfully and a large scale integral simulation about ten millions nodes were realized in the environment of Shenwei parallel computer. The whole preconditioning alternating Schward and another many improved algorithm, the para...

متن کامل

Green Energy-aware task scheduling using the DVFS technique in Cloud Computing

Nowdays, energy consumption as a critical issue in distributed computing systems with high performance has become so green computing tries to energy consumption, carbon footprint and CO2 emissions in high performance computing systems (HPCs) such as clusters, Grid and Cloud that a large number of parallel. Reducing energy consumption for high end computing can bring various benefits such as red...

متن کامل

Oil Field Production using Machine Learning CS 229 Project Report

Effective management of reservoirs motivates oil and gas companies to do uncertainty analysis, optimize production and/or field development etc. Any such analysis requires a large number of flow simulations, of the order of hundreds in case of gradient-based methods or even thousands in case of direct search or stochastic procedures such as genetic algorithms. Since flow simulations are computa...

متن کامل

Parallel computation for reservoir thermal simulation of multicomponent and multiphase fluid flow

We consider parallel computing technology for the thermal simulation of multicomponent, multiphase fluid flow in petroleum reservoirs. This paper reports the development and applications of a parallel thermal recovery simulation code. This code utilizes the message passing interface (MPI) library, overlapping domain decomposition, and dynamic memory allocation techniques. Its efficiency is inve...

متن کامل

Prediction of Nitrogen Injection Performance in Conventional Reservoirs Using the Correlation Developed by the Incorporation of Experimental Design Techniques and Reservoir Simulation

Enhanced oil recovery using nitrogen injection is a commonly applied method for pressure maintenance in conventional reservoirs. Numerical simulations can be practiced for the prediction of a reservoir performance in the course of injection process; however, a detailed simulation might take up enormous computer processing time. In such cases, a simple statistical model may be a good approach to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001